Komputasi modern tak hanya berguna pada bidang teknologi, beberapa bidang lainnya juga memanfaatkan komputasi modern ini seperti pada pendidikan, industri, kesehatan, bisnis, sains, kemanan, dan lainnya. Disini saya akan membahas tentang "Penerapan Komputasi Modern pada bidang Sains". Berikut ini contoh penerapan di bidang Sains, yaitu Fisika, Kimia, Biologi dan Matematika :
- Pada bidang Fisika
Dalam fisika, berbagai teori yang berdasarkan permodelan matematika menyediakan prediksi yang akurat mengenai bagaimana sebuah sistem bergerak. Namun seringkali penggunaan permodelam matematika untuk sebuah sistem khusus yang bertujuan untuk menghasilkan prediksi yang bermanfaat tidak bisa dilakukan ketika itu. Hal ini terjadi karena solusi permasalahan tidak memiliki ekspresi bentuk tertutup (closed-form expression) atau terlalu rumit. Dalam banyak kasus, perkiraan numerik dibutuhkan. Fisika Komputasi adalah subjek yang berhubungan dengan berbagai perkiraan numerik; perkiraan solusi yang ditulis sebagai sejumlah besar bilangan terbatas (finite) dari operasi matematika sederhana (algoritma), dan komputer digunakan untuk melakukan operasi tersebut dan menghitung solusi dan errornya.
Fisika komputasi adalah studi implementasi numerik algoritma untuk memecahkan masalah di bidang fisika di mana teori kuantitatif sudah ada. Dalam sejarah, fisika komputasi adalah aplikasi ilmu komputer modern pertama di bidang sains, dan sekarang menjadi subbagian dari sains komputasi.
Berikut ini salah satu hasil ilmu komputasi di bidang Fisika :

- Pada bidang Kimia
Kimia komputasi adalah cabang kimia yang menggunakan hasil kimia teori yang diterjemahkan ke dalam program komputer untuk menghitung sifat-sifat molekul dan perubahannya maupun melakukan simulasi terhadap sistem-sistem besar (makromolekul seperti protein atau sistem banyak molekul seperti gas, cairan, padatan, dan kristal cair), dan menerapkan program tersebut pada sistem kimia nyata.
Contoh sifat-sifat molekul yang dihitung antara lain struktur (yaitu letak atom-atom penyusunnya), energi dan selisih energi, muatan, momen dipol, kereaktifan, frekuensi getaran dan besaran spektroskopi lainnya. Simulasi terhadap makromolekul (seperti protein dan asam nukleat) dan sistem besar bisa mencakup kajian konformasi molekul dan perubahannya (mis. proses denaturasi protein), perubahan fase, serta peramalan sifat-sifat makroskopik (seperti kalor jenis) berdasarkan perilaku di tingkat atom dan molekul. Istilah kimia komputasi kadang-kadang digunakan juga untuk bidang-bidang tumpang-tindah antara ilmu komputer dan kimia.
Terdapat beberapa bidang utama dalam topik ini, antara lain:
- Penyajian komputasi atom dan molekul.
- Pendekatan dalam penyimpanan dan pencarian spesi kimia (Basisdata kimia).
- Pendekatan dalam penentuan pola dan hubungan antara struktur kimia dan sifat-sifatnya (QSPR, QSAR).
- Elusidasi struktur secara teoretis berdasarkan pada simulasi gaya-gaya.
- Pendekatan komputasi untuk membantu sintesis senyawa yang efisien.
- Pendekatan komputasi untuk merancang molekul yang berinteraksi lewat cara-cara yang khusus, khususnya dalam perancangan obat.
- Simulasi proses transisi fase.
- Simulasi sifat-sifat bahan seperti polimer, logam, dan kristal (termasuk kristal cair).
Agar diperoleh proses komputasi yang paling efisien dan akurat dapat dilakukan beberapa pendekatan, seperti :
- Kajian komputasi dapat dilakukan untuk menemukan titik awal untuk sintesis dalam laboratorium.
- Kajian komputasi dapat digunakan untuk menjelajahi mekanisme reaksi dan menjelaskan pengamatan pada reaksi di laboratorium.
- Kajian komputasi dapat digunakan untuk memahami sifat dan perubahan pada sistem makroskopis melalui simulasi yang berlandaskan hukum-hukum interaksi yang ada dalam sistem.
Sumber <--
Komentar
Posting Komentar